

АКТУАЛЬНОСТЬ

- Эффективное управление растениеводством и питанием растений
- Интеграция АІ и ІоТ в сельское хозяйство
- Увеличение количества и качества урожая
- Снижение вреда окружающей среде и здоровью человека
- Экономия ресурсов

Predictive Analytics

Artificial Intelligence

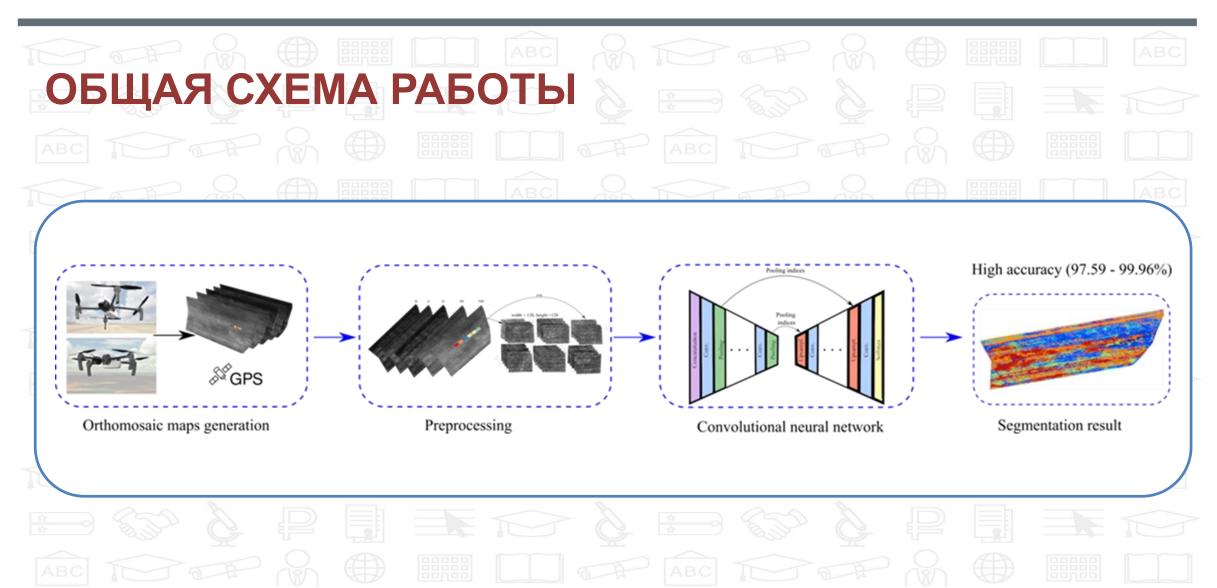
- Продовольственная безопасность
- Изменение климата, экология

основные идеи

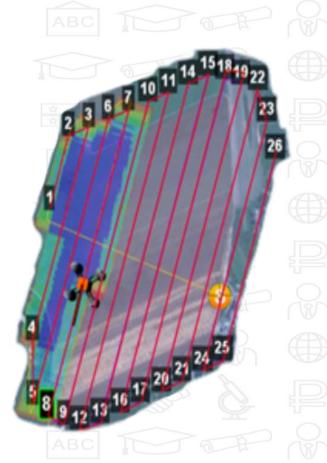
- Н1: Технологии БЛА могут быть эффективно применены для сбора разнобразных данных и мониторинга азотного статуса растений
- Н2: Мультиспектральный анализ полезен для получения дополнительной информации о состоянии посевов
- Н3: Алгоритмы сегментации изображений с глубоким обучением могут быть применены в точном земледелии для мониторинга азотного статуса растений
- Н4: Алгоритмы глубокого обучения обладают высокой точностью мониторинга азотного статуса растений

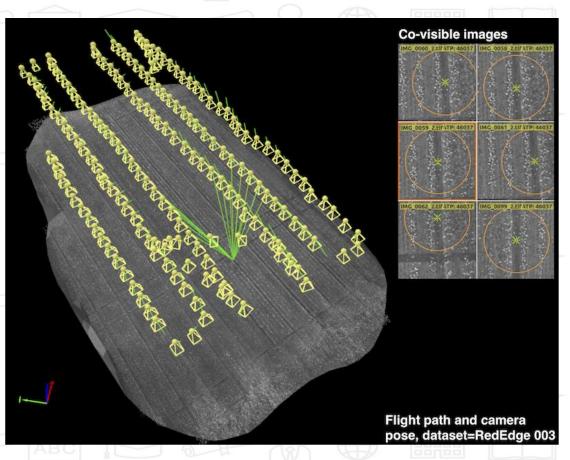
ПОЧЕМУ ГЛУБОКОЕ ОБУЧЕНИЕ?

Algorithms	Types	Accuracy	Papers		
Random Forest	ML	69.44%	Mekha and Teeyasuksaet (2021)		
Decision Tree	ML	63.89%			
Gradient Boosting	ML	66.67%			
Naive Bayes	ML	36.11%			
Linear SVM	ML	79.56 - 97.86%	Makantasis et al (2015)		
RBF-SVM	ML	82.79 - 99.01%			
R-PCA Linear-SVM	ML	79.47 - 97.63%			
R-PCA RBF-SVM	ML	82.71 - 98.87%			
CNN	DL	98.88 - 99.91%			
SVM	ML	57.1-83.3%	Abraham et al (2021)		
CNN	DL	74.16-96.8%			
Random forest	ML	91.79%	Ho Tong Minh et al (2018)		
SVM	ML	91.25%			
LSTM	DL	98.83%			
GRU	DL	99.05%			



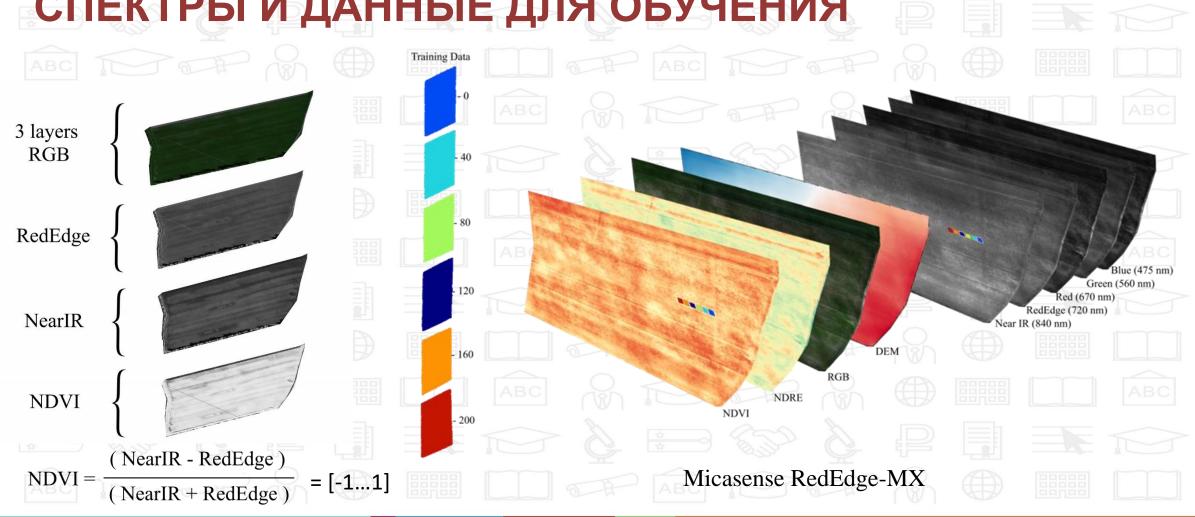
СБОР ДАННЫХ И СЪЕМКА БЛА





СБОР ДАННЫХ И СЪЕМКА БЛА

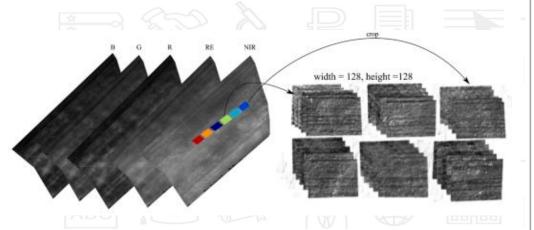
СПЕКТРЫ И ДАННЫЕ ДЛЯ ОБУЧЕНИЯ



ВЛИЯНИЕ ВЫБОРА СПЕКТРА

	ABC P ABC B ABC HILL ISSUED
Bands	Accuracy
RGB	0,98043
RGB+RedEdge	0,17585
RGB+NearIR	0,98269
RGB+NDVI	0,18605 ABC
RGB+RedEdge+NearIR	0,1994
RGB+RedEdge+NDVI	ABC 10,19959
RGB+NearIR+NDVI	0,98921 ABC
RGB+RedEdge+NearIR+NDVI	0,19175

ГЕНЕРАЦИЯ СИНТЕТИЧЕСКИХ ДАННЫХ



Algorithm 3: Steps of the proposed data augmentation method for semantic segmentation.

Input:raw dataset with images and associated mask labels;

Output: A batch of N newly generated images with associated mask labels;

Create image number n = 0;

for n = 1:N do

- (1) randomly choose a folder with group of images
- (2) randomly choose the first image from the group

for i=1:6 do

- randomly choose a new image to insert
- (2) create an empty mask image
- (3) randomly choose a number of figures to create in range between 3 and 6

for j=1:3-6 do

- (1) create a figure with random width 40-60px and random height 40-60px filled with circular shapes
- (2) insert the figure into the mask image at random coordinates

end

- (4) create a smoothing filter
- (5) insert the chosen image to the first with mask and smoothing filter

end

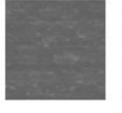
(3) convert labels to one-hot encoding

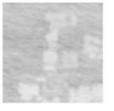
end

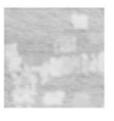
СИНТЕТИЧЕСКИЕ ДАННЫЕ

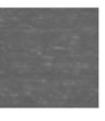
 Датасет для обучения - 15 000 сгенерированных изображений

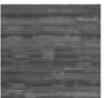
NDVI

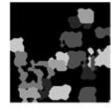


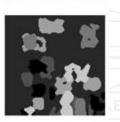


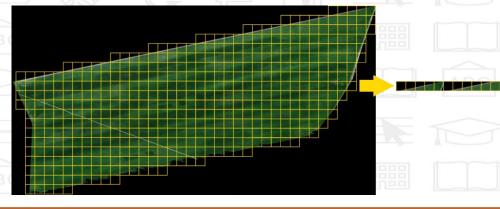


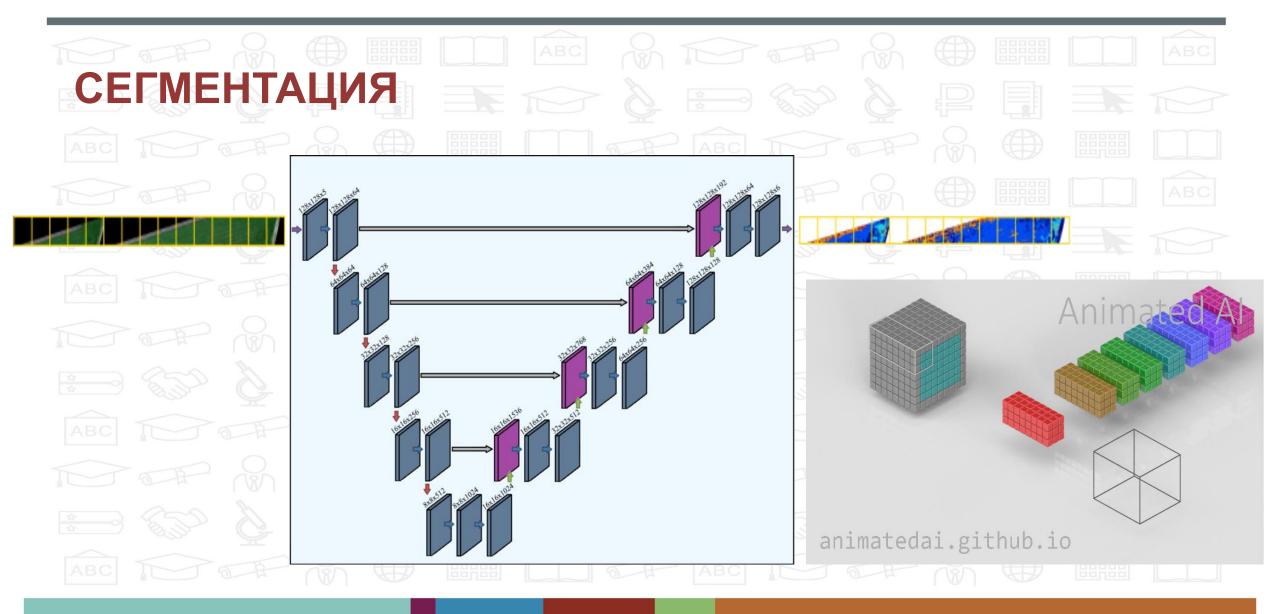








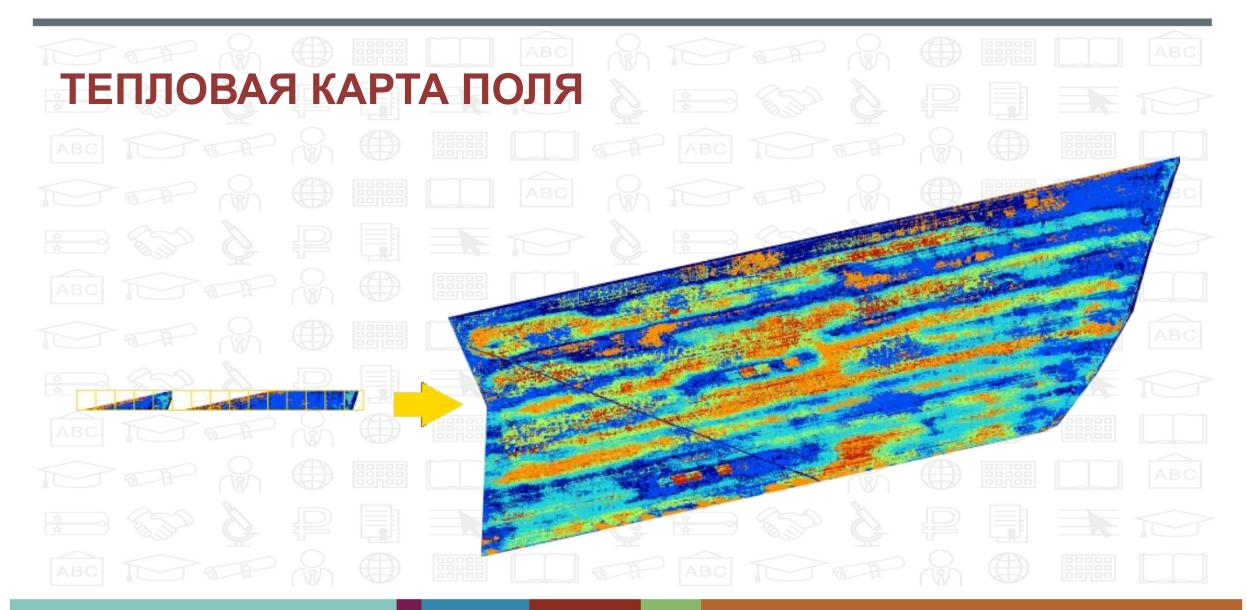




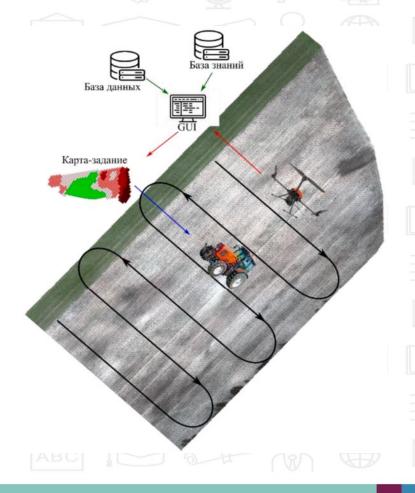
ОЦЕНКА КАЧЕСТВА

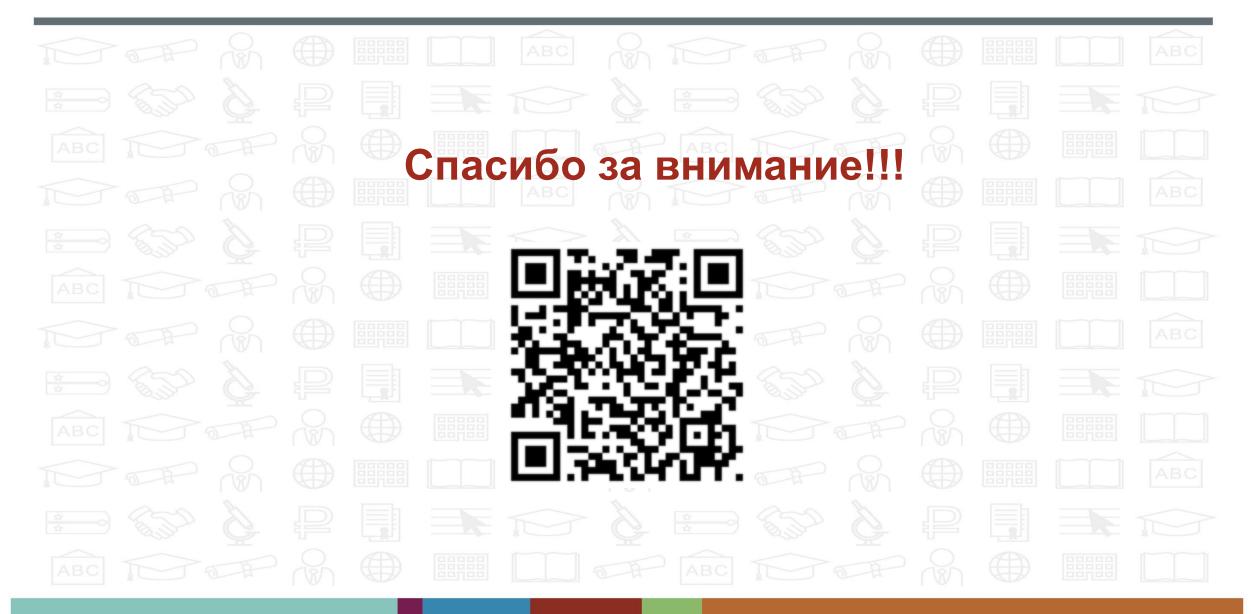
ABU								
Trained Models	Accuracy	BalancedAcc	IOU	Precision	Recall	F1	MCC	K
U-Net	0,99814	0,99814	0,99628	0,99814	0,99814	0,99813	0,99776	0,99776
Attention U-Net	0,99602	0,99603	0,99208	0,99602	0,99603	0,99602	0,99523	0,99523
R2U-Net (t2)	0,99822	0,99822	0,99644	0,99822	0,99822	0,99822	0,99786	0,99786
R2U-Net (t3)	0,99786	0,99786	0,99572	0,99786	0,99786	0,99786	0,99743	0,99743
R2U-Net (t4)	0,99853	0,99853	0,99706	0,99853	0,99853	0,99853	0,99823	0,99823
Attention R2U-Net (t2)	0,99829	0,99829	0,99659	0,99829	0,99829	0,99829	0,99795	0,99795
Attention R2U-Net (t3)	0,99942	0,99942	0,99884	0,99942	0,99942	0,99942	0,99931	0,99931
Attention R2U-Net (t4)	0,99829	0,99829	0,99659	0,99829	0,99829	0,99829	0,99795	0,99795
Unet3+	0,99819	0,99819	0,99638	0,99819	0,99819	0,99819	0,99782	0,99782
Unet3+ (supervised)	0,98882	0,98885	0,97791	0,98882	0,98885	0,98881	0,9866	0,98658

Blekanov I., Molin A., Zhang, D., Mitrofanov E., Mitrofanova O., & Li, Y. (2023). Monitoring of grain crops nitrogen status from uav multispectral images coupled with deep learning approaches. Computers and Electronics in Agriculture, 212, [108047]. https://doi.org/10.1016/j.compag.2023.108047



ВНЕСЕНИЕ ПОРЦИИ АЗОТА





НАШ ПОДХОД

Hardware & software

- Pycharm and Anaconda by using Python 3.9 and CUDA 11.8
- CPU-Intel(R) Xeon(R) Silver 4210, 512
 GB of RAM and NVIDIA GeForce RTX
 A6000 GPU
- ➤ OS-64-bit Ubuntu 20.04 LTS
- > Tensorflow 2.7

